Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(2): 299-306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921582

RESUMEN

Salinity has been reported to impact the octanol-water partition coefficient of organic contaminants entering aquatic ecosystems. However, limited data are available on the impacts of salinity on their partitioning from the aqueous phase to adjacent organic compartments. The pesticides bifenthrin, chlorpyrifos, dicloran, myclobutanil, penconazole, and triadimefon were used to investigate the effects of salinity on their partitioning to capelin (Mallotus villosus) eggs in 5 practical salinity units (PSU) versus 25 PSU artificial seawater (ASW). The partitioning coefficient was significantly higher in 25 versus 5 PSU ASW for bifenthrin, chlorpyrifos, dicloran, penconazole, and triadimefon by 31%, 28%, 35%, 28%, and 20%, respectively, while for myclobutanil there was no significant difference. Moreover, pesticide partitioning to store-bought capelin eggs was consistent with the partitioning observed for the standard assay species, inland silversides (Menidia beryllina) eggs, after partitioning between the eggs and exposure solution had reached a state of equilibrium. The present study illustrates the importance of considering the influence of salinity on the environmental partitioning and fate of hydrophobic organic contaminants in aquatic ecosystems. Environ Toxicol Chem 2024;43:299-306. © 2023 SETAC.


Asunto(s)
Compuestos de Anilina , Cloropirifos , Nitrilos , Plaguicidas , Piretrinas , Triazoles , Contaminantes Químicos del Agua , Animales , Plaguicidas/química , Salinidad , Ecosistema , Peces , Agua/química , Contaminantes Químicos del Agua/química
2.
Environ Toxicol Chem ; 42(8): 1721-1729, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37283213

RESUMEN

While salinity can alter the photodegradation of hydrophobic organic compounds (HOCs), the cause of their altered kinetics in seawater is not well understood. Because HOC intermediate photoproducts are often more toxic than their parent compounds, characterizing the generation of intermediates in saline environments is needed to accurately predict their health effects. The present study investigated the influence of salinity on the generation of anthraquinone through the photolysis of anthracene and the generation of anthrone and 1-hydroxyanthraquinone from the photolysis of anthraquinone as well as their reactivities with hydroxyl radicals. This was conducted by measuring the photolysis rates of anthracene and anthraquinone and characterizing their product formation in buffered deionized water, artificial seawater, individual seawater halides (bromide, chloride, and iodide), dimethyl sulfoxide, furfuryl alcohol, and solutions of hydrogen peroxide. Salinity enhanced the persistence of anthraquinone by a factor >10 and altered its product formation, including the generation of the suspected carcinogen 1-hydroxyanthraquinone. In part, this was attributed to reactive oxygen species (ROS) scavenging by the seawater constituents chloride and bromide. In addition, anthraquinone and its hydroxylated products were found to be moderately to highly reactive with hydroxyl radicals, further illustrating their tendency to react with ROS in aqueous environments. The present study emphasizes the importance of considering the effects of salinity on organic contaminant degradation; it can significantly enhance the persistence of HOCs and alter their intermediate formation, subsequently impacting chemical exposure times and potential toxic effects on estuarine/marine organisms. Environ Toxicol Chem 2023;42:1721-1729. © 2023 SETAC.


Asunto(s)
Bromuros , Contaminantes Químicos del Agua , Especies Reactivas de Oxígeno , Cloruros , Agua/química , Antraquinonas/toxicidad , Antracenos , Compuestos Orgánicos/química , Fotólisis , Radical Hidroxilo , Contaminantes Químicos del Agua/análisis
3.
J Agric Food Chem ; 67(27): 7609-7615, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257874

RESUMEN

Shallow water systems are uniquely susceptible to environmental processes such as photolysis and hydrolysis that can influence the dissipation of pesticides into sediments. The fungicide dicloran has previously been shown to undergo photolysis and is reported to dissipate in soils and sediments. The photodegradation and dissipation of dicloran in freshwater and seawater was monitored in a laboratory-simulated shallow water system. While no difference was observed between freshwater and seawater systems in the presence of simulated sunlight, the dissipation of dicloran in dark trial systems differed between salinities; 30% of the applied mass dissipated into the sediment in freshwater vs 22% in seawater, and the photodegradation rate and half-life were also impacted by the presence of sediment. The potential for dicloran to dissipate and photodegrade affects the overall behavior of dicloran between waters. Differences in chemical behavior with sediment presence and potential for photodegradation have the capacity to impact organisms within the ecosystem and suggest that these factors may need to be implemented into chemical exposure assessments dependent upon location.


Asunto(s)
Compuestos de Anilina/química , Agua Dulce/química , Sedimentos Geológicos/química , Fotólisis , Agua de Mar/química , Luz Solar , Ecosistema , Fungicidas Industriales/química , Suelo/química , Contaminantes Químicos del Agua/química
4.
Chemosphere ; 162: 208-21, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27497351

RESUMEN

Adding clay to marine oil pollution represents a promising approach to enhance bacterial hydrocarbon degradation in nutrient poor waters. In this study, three types of regionally available clays (Ca-bentonite, Fuller's Earth and kaolin) were tested to stimulate the biodegradation of source and weathered oil collected from the Deepwater Horizon spill. The weathered oil showed little biodegradation prior to experimentation and was extensively degraded by bacteria in the laboratory in a similar way as the alkane-rich source oil. For both oils, the addition of natural clay-flakes showed minor enhancement of oil biodegradation compared to the non-clay bearing control, but the clay-oil films did limit evaporation. Only alkanes of a molecular weight (MW) > 420 showed significant reduction by enhanced biodegradation following natural clay treatment. In contrast, all fertilized clay flakes showed major bacterial degradation of the oil, with a 6-10 times reduction in alkane content, and an up to 8 fold increase in the rate of O2 consumption. Compared to the control, such treatment showed particular reduction of longer chained alkanes (MW > 226). The application of natural and fertilized clay flakes also showed selective reduction of PAHs, mainly in the MW range of 200-300, but without significant change in the toxicity indices measured. These results imply that a large variety of clays may be used to boost oil biodegradation by aiding attachment of fertilizing nutrients to the oil.


Asunto(s)
Silicatos de Aluminio/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Hidrocarburos/metabolismo , Contaminación por Petróleo , Biodegradación Ambiental/efectos de los fármacos , Arcilla , Golfo de México , Hidrocarburos/aislamiento & purificación , Petróleo/análisis , Contaminación por Petróleo/análisis , Tiempo (Meteorología)
5.
Biotechnol Res Int ; 2013: 704806, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23864952

RESUMEN

Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...